Metamath Proof Explorer


Theorem nic-mpALT

Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-jmin 𝜑
nic-jmaj ( 𝜑 ⊼ ( 𝜒𝜓 ) )
Assertion nic-mpALT 𝜓

Proof

Step Hyp Ref Expression
1 nic-jmin 𝜑
2 nic-jmaj ( 𝜑 ⊼ ( 𝜒𝜓 ) )
3 df-nan ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜒𝜓 ) ) )
4 df-nan ( ( 𝜒𝜓 ) ↔ ¬ ( 𝜒𝜓 ) )
5 4 anbi2i ( ( 𝜑 ∧ ( 𝜒𝜓 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜒𝜓 ) ) )
6 3 5 xchbinx ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒𝜓 ) ) )
7 2 6 mpbi ¬ ( 𝜑 ∧ ¬ ( 𝜒𝜓 ) )
8 iman ( ( 𝜑 → ( 𝜒𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒𝜓 ) ) )
9 7 8 mpbir ( 𝜑 → ( 𝜒𝜓 ) )
10 9 simprd ( 𝜑𝜓 )
11 1 10 ax-mp 𝜓