Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nic-jmin | ⊢ 𝜑 | |
| nic-jmaj | ⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) | ||
| Assertion | nic-mpALT | ⊢ 𝜓 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nic-jmin | ⊢ 𝜑 | |
| 2 | nic-jmaj | ⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) | |
| 3 | df-nan | ⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ) | |
| 4 | df-nan | ⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ¬ ( 𝜒 ∧ 𝜓 ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) | 
| 6 | 3 5 | xchbinx | ⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) | 
| 7 | 2 6 | mpbi | ⊢ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) | 
| 8 | iman | ⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) | |
| 9 | 7 8 | mpbir | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) | 
| 10 | 9 | simprd | ⊢ ( 𝜑 → 𝜓 ) | 
| 11 | 1 10 | ax-mp | ⊢ 𝜓 |