Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nic-jmin | ⊢ 𝜑 | |
nic-jmaj | ⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) | ||
Assertion | nic-mpALT | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-jmin | ⊢ 𝜑 | |
2 | nic-jmaj | ⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) | |
3 | df-nan | ⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ) | |
4 | df-nan | ⊢ ( ( 𝜒 ⊼ 𝜓 ) ↔ ¬ ( 𝜒 ∧ 𝜓 ) ) | |
5 | 4 | anbi2i | ⊢ ( ( 𝜑 ∧ ( 𝜒 ⊼ 𝜓 ) ) ↔ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) |
6 | 3 5 | xchbinx | ⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) |
7 | 2 6 | mpbi | ⊢ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) |
8 | iman | ⊢ ( ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( 𝜒 ∧ 𝜓 ) ) ) | |
9 | 7 8 | mpbir | ⊢ ( 𝜑 → ( 𝜒 ∧ 𝜓 ) ) |
10 | 9 | simprd | ⊢ ( 𝜑 → 𝜓 ) |
11 | 1 10 | ax-mp | ⊢ 𝜓 |