Metamath Proof Explorer


Theorem nic-mpALT

Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-jmin
|- ph
nic-jmaj
|- ( ph -/\ ( ch -/\ ps ) )
Assertion nic-mpALT
|- ps

Proof

Step Hyp Ref Expression
1 nic-jmin
 |-  ph
2 nic-jmaj
 |-  ( ph -/\ ( ch -/\ ps ) )
3 df-nan
 |-  ( ( ph -/\ ( ch -/\ ps ) ) <-> -. ( ph /\ ( ch -/\ ps ) ) )
4 df-nan
 |-  ( ( ch -/\ ps ) <-> -. ( ch /\ ps ) )
5 4 anbi2i
 |-  ( ( ph /\ ( ch -/\ ps ) ) <-> ( ph /\ -. ( ch /\ ps ) ) )
6 3 5 xchbinx
 |-  ( ( ph -/\ ( ch -/\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) )
7 2 6 mpbi
 |-  -. ( ph /\ -. ( ch /\ ps ) )
8 iman
 |-  ( ( ph -> ( ch /\ ps ) ) <-> -. ( ph /\ -. ( ch /\ ps ) ) )
9 7 8 mpbir
 |-  ( ph -> ( ch /\ ps ) )
10 9 simprd
 |-  ( ph -> ps )
11 1 10 ax-mp
 |-  ps