Metamath Proof Explorer


Theorem nic-mpALT

Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-jmin φ
nic-jmaj φχψ
Assertion nic-mpALT ψ

Proof

Step Hyp Ref Expression
1 nic-jmin φ
2 nic-jmaj φχψ
3 df-nan φχψ¬φχψ
4 df-nan χψ¬χψ
5 4 anbi2i φχψφ¬χψ
6 3 5 xchbinx φχψ¬φ¬χψ
7 2 6 mpbi ¬φ¬χψ
8 iman φχψ¬φ¬χψ
9 7 8 mpbir φχψ
10 9 simprd φψ
11 1 10 ax-mp ψ