Metamath Proof Explorer


Theorem nic-mpALT

Description: A direct proof of nic-mp . (Contributed by NM, 30-Dec-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-jmin φ
nic-jmaj φ χ ψ
Assertion nic-mpALT ψ

Proof

Step Hyp Ref Expression
1 nic-jmin φ
2 nic-jmaj φ χ ψ
3 df-nan φ χ ψ ¬ φ χ ψ
4 df-nan χ ψ ¬ χ ψ
5 4 anbi2i φ χ ψ φ ¬ χ ψ
6 3 5 xchbinx φ χ ψ ¬ φ ¬ χ ψ
7 2 6 mpbi ¬ φ ¬ χ ψ
8 iman φ χ ψ ¬ φ ¬ χ ψ
9 7 8 mpbir φ χ ψ
10 9 simprd φ ψ
11 1 10 ax-mp ψ