Metamath Proof Explorer
Description: Extending a linear order to subsets, the empty set is less than any
subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)
|
|
Ref |
Expression |
|
Hypotheses |
nla0001.defsslt |
⊢ < = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) } |
|
|
nla0001.set |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
|
|
nla0002.sset |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
|
Assertion |
nla0002 |
⊢ ( 𝜑 → ∅ < 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nla0001.defsslt |
⊢ < = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) } |
| 2 |
|
nla0001.set |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 3 |
|
nla0002.sset |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 6 |
|
0ss |
⊢ ∅ ⊆ 𝑆 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝑆 ) |
| 8 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ 𝐴 𝑥 𝑅 𝑦 |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ 𝐴 𝑥 𝑅 𝑦 ) |
| 10 |
7 3 9
|
3jca |
⊢ ( 𝜑 → ( ∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ 𝐴 𝑥 𝑅 𝑦 ) ) |
| 11 |
1
|
rp-brsslt |
⊢ ( ∅ < 𝐴 ↔ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) ∧ ( ∅ ⊆ 𝑆 ∧ 𝐴 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ 𝐴 𝑥 𝑅 𝑦 ) ) ) |
| 12 |
5 2 10 11
|
syl21anbrc |
⊢ ( 𝜑 → ∅ < 𝐴 ) |