Metamath Proof Explorer


Theorem rp-brsslt

Description: Binary relation form of a relation, .< , which has been extended from relation R to subsets of class S . Usually, we will assume R Or S . Definition in Alling, p. 2. Generalization of brsslt . (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypothesis nla0001.defsslt < = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎𝑆𝑏𝑆 ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥 𝑅 𝑦 ) }
Assertion rp-brsslt ( 𝐴 < 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴𝑆𝐵𝑆 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝑅 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 nla0001.defsslt < = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎𝑆𝑏𝑆 ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥 𝑅 𝑦 ) }
2 sseq1 ( 𝑎 = 𝐴 → ( 𝑎𝑆𝐴𝑆 ) )
3 raleq ( 𝑎 = 𝐴 → ( ∀ 𝑥𝑎𝑦𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑥𝐴𝑦𝑏 𝑥 𝑅 𝑦 ) )
4 2 3 3anbi13d ( 𝑎 = 𝐴 → ( ( 𝑎𝑆𝑏𝑆 ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥 𝑅 𝑦 ) ↔ ( 𝐴𝑆𝑏𝑆 ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥 𝑅 𝑦 ) ) )
5 sseq1 ( 𝑏 = 𝐵 → ( 𝑏𝑆𝐵𝑆 ) )
6 raleq ( 𝑏 = 𝐵 → ( ∀ 𝑦𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑦𝐵 𝑥 𝑅 𝑦 ) )
7 6 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑥𝐴𝑦𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝑅 𝑦 ) )
8 5 7 3anbi23d ( 𝑏 = 𝐵 → ( ( 𝐴𝑆𝑏𝑆 ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥 𝑅 𝑦 ) ↔ ( 𝐴𝑆𝐵𝑆 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝑅 𝑦 ) ) )
9 4 8 1 bropabg ( 𝐴 < 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴𝑆𝐵𝑆 ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝑅 𝑦 ) ) )