Step |
Hyp |
Ref |
Expression |
1 |
|
nla0001.defsslt |
⊢ < = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) } |
2 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝑆 ↔ 𝐴 ⊆ 𝑆 ) ) |
3 |
|
raleq |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) ) |
4 |
2 3
|
3anbi13d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) ↔ ( 𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) ) ) |
5 |
|
sseq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ 𝑆 ↔ 𝐵 ⊆ 𝑆 ) ) |
6 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 𝑅 𝑦 ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 𝑅 𝑦 ) ) |
8 |
5 7
|
3anbi23d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) ↔ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 𝑅 𝑦 ) ) ) |
9 |
4 8 1
|
bropabg |
⊢ ( 𝐴 < 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 𝑅 𝑦 ) ) ) |