Metamath Proof Explorer


Theorem rp-brsslt

Description: Binary relation form of a relation, .< , which has been extended from relation R to subsets of class S . Usually, we will assume R Or S . Definition in Alling, p. 2. Generalization of brsslt . (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypothesis nla0001.defsslt < ˙ = a b | a S b S x a y b x R y
Assertion rp-brsslt A < ˙ B A V B V A S B S x A y B x R y

Proof

Step Hyp Ref Expression
1 nla0001.defsslt < ˙ = a b | a S b S x a y b x R y
2 sseq1 a = A a S A S
3 raleq a = A x a y b x R y x A y b x R y
4 2 3 3anbi13d a = A a S b S x a y b x R y A S b S x A y b x R y
5 sseq1 b = B b S B S
6 raleq b = B y b x R y y B x R y
7 6 ralbidv b = B x A y b x R y x A y B x R y
8 5 7 3anbi23d b = B A S b S x A y b x R y A S B S x A y B x R y
9 4 8 1 bropabg A < ˙ B A V B V A S B S x A y B x R y