Metamath Proof Explorer


Theorem rp-brsslt

Description: Binary relation form of a relation, .< , which has been extended from relation R to subsets of class S . Usually, we will assume R Or S . Definition in Alling, p. 2. Generalization of brsslt . (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypothesis nla0001.defsslt
|- .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) }
Assertion rp-brsslt
|- ( A .< B <-> ( ( A e. _V /\ B e. _V ) /\ ( A C_ S /\ B C_ S /\ A. x e. A A. y e. B x R y ) ) )

Proof

Step Hyp Ref Expression
1 nla0001.defsslt
 |-  .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) }
2 sseq1
 |-  ( a = A -> ( a C_ S <-> A C_ S ) )
3 raleq
 |-  ( a = A -> ( A. x e. a A. y e. b x R y <-> A. x e. A A. y e. b x R y ) )
4 2 3 3anbi13d
 |-  ( a = A -> ( ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) <-> ( A C_ S /\ b C_ S /\ A. x e. A A. y e. b x R y ) ) )
5 sseq1
 |-  ( b = B -> ( b C_ S <-> B C_ S ) )
6 raleq
 |-  ( b = B -> ( A. y e. b x R y <-> A. y e. B x R y ) )
7 6 ralbidv
 |-  ( b = B -> ( A. x e. A A. y e. b x R y <-> A. x e. A A. y e. B x R y ) )
8 5 7 3anbi23d
 |-  ( b = B -> ( ( A C_ S /\ b C_ S /\ A. x e. A A. y e. b x R y ) <-> ( A C_ S /\ B C_ S /\ A. x e. A A. y e. B x R y ) ) )
9 4 8 1 bropabg
 |-  ( A .< B <-> ( ( A e. _V /\ B e. _V ) /\ ( A C_ S /\ B C_ S /\ A. x e. A A. y e. B x R y ) ) )