Description: Extending a linear order to subsets, the empty set is less than any subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nla0001.defsslt | |- .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) } |
|
nla0001.set | |- ( ph -> A e. _V ) |
||
nla0002.sset | |- ( ph -> A C_ S ) |
||
Assertion | nla0002 | |- ( ph -> (/) .< A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nla0001.defsslt | |- .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) } |
|
2 | nla0001.set | |- ( ph -> A e. _V ) |
|
3 | nla0002.sset | |- ( ph -> A C_ S ) |
|
4 | 0ex | |- (/) e. _V |
|
5 | 4 | a1i | |- ( ph -> (/) e. _V ) |
6 | 0ss | |- (/) C_ S |
|
7 | 6 | a1i | |- ( ph -> (/) C_ S ) |
8 | ral0 | |- A. x e. (/) A. y e. A x R y |
|
9 | 8 | a1i | |- ( ph -> A. x e. (/) A. y e. A x R y ) |
10 | 7 3 9 | 3jca | |- ( ph -> ( (/) C_ S /\ A C_ S /\ A. x e. (/) A. y e. A x R y ) ) |
11 | 1 | rp-brsslt | |- ( (/) .< A <-> ( ( (/) e. _V /\ A e. _V ) /\ ( (/) C_ S /\ A C_ S /\ A. x e. (/) A. y e. A x R y ) ) ) |
12 | 5 2 10 11 | syl21anbrc | |- ( ph -> (/) .< A ) |