Metamath Proof Explorer


Theorem nla0002

Description: Extending a linear order to subsets, the empty set is less than any subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypotheses nla0001.defsslt
|- .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) }
nla0001.set
|- ( ph -> A e. _V )
nla0002.sset
|- ( ph -> A C_ S )
Assertion nla0002
|- ( ph -> (/) .< A )

Proof

Step Hyp Ref Expression
1 nla0001.defsslt
 |-  .< = { <. a , b >. | ( a C_ S /\ b C_ S /\ A. x e. a A. y e. b x R y ) }
2 nla0001.set
 |-  ( ph -> A e. _V )
3 nla0002.sset
 |-  ( ph -> A C_ S )
4 0ex
 |-  (/) e. _V
5 4 a1i
 |-  ( ph -> (/) e. _V )
6 0ss
 |-  (/) C_ S
7 6 a1i
 |-  ( ph -> (/) C_ S )
8 ral0
 |-  A. x e. (/) A. y e. A x R y
9 8 a1i
 |-  ( ph -> A. x e. (/) A. y e. A x R y )
10 7 3 9 3jca
 |-  ( ph -> ( (/) C_ S /\ A C_ S /\ A. x e. (/) A. y e. A x R y ) )
11 1 rp-brsslt
 |-  ( (/) .< A <-> ( ( (/) e. _V /\ A e. _V ) /\ ( (/) C_ S /\ A C_ S /\ A. x e. (/) A. y e. A x R y ) ) )
12 5 2 10 11 syl21anbrc
 |-  ( ph -> (/) .< A )