| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nla0001.defsslt |
⊢ < = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 𝑅 𝑦 ) } |
| 2 |
|
nla0001.set |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 3 |
|
nla0002.sset |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 6 |
|
0ss |
⊢ ∅ ⊆ 𝑆 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ∅ ⊆ 𝑆 ) |
| 8 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑦 |
| 9 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ ∅ ∀ 𝑥 ∈ 𝐴 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ∅ 𝑥 𝑅 𝑦 ) |
| 10 |
8 9
|
mpbi |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ∅ 𝑥 𝑅 𝑦 |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ∅ 𝑥 𝑅 𝑦 ) |
| 12 |
3 7 11
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ∅ 𝑥 𝑅 𝑦 ) ) |
| 13 |
1
|
rp-brsslt |
⊢ ( 𝐴 < ∅ ↔ ( ( 𝐴 ∈ V ∧ ∅ ∈ V ) ∧ ( 𝐴 ⊆ 𝑆 ∧ ∅ ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ∅ 𝑥 𝑅 𝑦 ) ) ) |
| 14 |
2 5 12 13
|
syl21anbrc |
⊢ ( 𝜑 → 𝐴 < ∅ ) |