Metamath Proof Explorer


Theorem nla0003

Description: Extending a linear order to subsets, the empty set is greater than any subset. Note in Alling, p. 3. (Contributed by RP, 28-Nov-2023)

Ref Expression
Hypotheses nla0001.defsslt < ˙ = a b | a S b S x a y b x R y
nla0001.set φ A V
nla0002.sset φ A S
Assertion nla0003 φ A < ˙

Proof

Step Hyp Ref Expression
1 nla0001.defsslt < ˙ = a b | a S b S x a y b x R y
2 nla0001.set φ A V
3 nla0002.sset φ A S
4 0ex V
5 4 a1i φ V
6 0ss S
7 6 a1i φ S
8 ral0 y x A x R y
9 ralcom y x A x R y x A y x R y
10 8 9 mpbi x A y x R y
11 10 a1i φ x A y x R y
12 3 7 11 3jca φ A S S x A y x R y
13 1 rp-brsslt A < ˙ A V V A S S x A y x R y
14 2 5 12 13 syl21anbrc φ A < ˙