Metamath Proof Explorer


Theorem nlim3

Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim3 ¬ Lim 3o

Proof

Step Hyp Ref Expression
1 2on 2o ∈ On
2 nlimsuc ( 2o ∈ On → ¬ Lim suc 2o )
3 df-3o 3o = suc 2o
4 limeq ( 3o = suc 2o → ( Lim 3o ↔ Lim suc 2o ) )
5 3 4 ax-mp ( Lim 3o ↔ Lim suc 2o )
6 2 5 sylnibr ( 2o ∈ On → ¬ Lim 3o )
7 1 6 ax-mp ¬ Lim 3o