Metamath Proof Explorer


Theorem nlim4

Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim4 ¬ Lim 4o

Proof

Step Hyp Ref Expression
1 3on 3o ∈ On
2 nlimsuc ( 3o ∈ On → ¬ Lim suc 3o )
3 df-4o 4o = suc 3o
4 limeq ( 4o = suc 3o → ( Lim 4o ↔ Lim suc 3o ) )
5 3 4 ax-mp ( Lim 4o ↔ Lim suc 3o )
6 2 5 sylnibr ( 3o ∈ On → ¬ Lim 4o )
7 1 6 ax-mp ¬ Lim 4o