Metamath Proof Explorer


Theorem nlim4

Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim4 ¬ Lim 4 𝑜

Proof

Step Hyp Ref Expression
1 3on 3 𝑜 On
2 nlimsuc 3 𝑜 On ¬ Lim suc 3 𝑜
3 df-4o 4 𝑜 = suc 3 𝑜
4 limeq 4 𝑜 = suc 3 𝑜 Lim 4 𝑜 Lim suc 3 𝑜
5 3 4 ax-mp Lim 4 𝑜 Lim suc 3 𝑜
6 2 5 sylnibr 3 𝑜 On ¬ Lim 4 𝑜
7 1 6 ax-mp ¬ Lim 4 𝑜