Metamath Proof Explorer


Theorem nlim4

Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim4 ¬Lim4𝑜

Proof

Step Hyp Ref Expression
1 3on 3𝑜On
2 nlimsuc 3𝑜On¬Limsuc3𝑜
3 df-4o 4𝑜=suc3𝑜
4 limeq 4𝑜=suc3𝑜Lim4𝑜Limsuc3𝑜
5 3 4 ax-mp Lim4𝑜Limsuc3𝑜
6 2 5 sylnibr 3𝑜On¬Lim4𝑜
7 1 6 ax-mp ¬Lim4𝑜