Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
nlim4
Next ⟩
oa1un
Metamath Proof Explorer
Ascii
Unicode
Theorem
nlim4
Description:
4 is not a limit ordinal.
(Contributed by
RP
, 13-Dec-2024)
Ref
Expression
Assertion
nlim4
⊢
¬
Lim
⁡
4
𝑜
Proof
Step
Hyp
Ref
Expression
1
3on
⊢
3
𝑜
∈
On
2
nlimsuc
⊢
3
𝑜
∈
On
→
¬
Lim
⁡
suc
⁡
3
𝑜
3
df-4o
⊢
4
𝑜
=
suc
⁡
3
𝑜
4
limeq
⊢
4
𝑜
=
suc
⁡
3
𝑜
→
Lim
⁡
4
𝑜
↔
Lim
⁡
suc
⁡
3
𝑜
5
3
4
ax-mp
⊢
Lim
⁡
4
𝑜
↔
Lim
⁡
suc
⁡
3
𝑜
6
2
5
sylnibr
⊢
3
𝑜
∈
On
→
¬
Lim
⁡
4
𝑜
7
1
6
ax-mp
⊢
¬
Lim
⁡
4
𝑜