Metamath Proof Explorer


Theorem nlim4

Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim4
|- -. Lim 4o

Proof

Step Hyp Ref Expression
1 3on
 |-  3o e. On
2 nlimsuc
 |-  ( 3o e. On -> -. Lim suc 3o )
3 df-4o
 |-  4o = suc 3o
4 limeq
 |-  ( 4o = suc 3o -> ( Lim 4o <-> Lim suc 3o ) )
5 3 4 ax-mp
 |-  ( Lim 4o <-> Lim suc 3o )
6 2 5 sylnibr
 |-  ( 3o e. On -> -. Lim 4o )
7 1 6 ax-mp
 |-  -. Lim 4o