Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlim4 | |- -. Lim 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3on | |- 3o e. On |
|
| 2 | nlimsuc | |- ( 3o e. On -> -. Lim suc 3o ) |
|
| 3 | df-4o | |- 4o = suc 3o |
|
| 4 | limeq | |- ( 4o = suc 3o -> ( Lim 4o <-> Lim suc 3o ) ) |
|
| 5 | 3 4 | ax-mp | |- ( Lim 4o <-> Lim suc 3o ) |
| 6 | 2 5 | sylnibr | |- ( 3o e. On -> -. Lim 4o ) |
| 7 | 1 6 | ax-mp | |- -. Lim 4o |