Metamath Proof Explorer


Theorem nlim3

Description: 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024)

Ref Expression
Assertion nlim3
|- -. Lim 3o

Proof

Step Hyp Ref Expression
1 2on
 |-  2o e. On
2 nlimsuc
 |-  ( 2o e. On -> -. Lim suc 2o )
3 df-3o
 |-  3o = suc 2o
4 limeq
 |-  ( 3o = suc 2o -> ( Lim 3o <-> Lim suc 2o ) )
5 3 4 ax-mp
 |-  ( Lim 3o <-> Lim suc 2o )
6 2 5 sylnibr
 |-  ( 2o e. On -> -. Lim 3o )
7 1 6 ax-mp
 |-  -. Lim 3o