Metamath Proof Explorer


Theorem nllyeq

Description: Equality theorem for the Locally A predicate. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion nllyeq ( 𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵 )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
2 1 rexbidv ( 𝐴 = 𝐵 → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ∃ 𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
3 2 2ralbidv ( 𝐴 = 𝐵 → ( ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 ) )
4 3 rabbidv ( 𝐴 = 𝐵 → { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 } = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 } )
5 df-nlly 𝑛-Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐴 }
6 df-nlly 𝑛-Locally 𝐵 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( ( ( nei ‘ 𝑗 ) ‘ { 𝑦 } ) ∩ 𝒫 𝑥 ) ( 𝑗t 𝑢 ) ∈ 𝐵 }
7 4 5 6 3eqtr4g ( 𝐴 = 𝐵 → 𝑛-Locally 𝐴 = 𝑛-Locally 𝐵 )