| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 |  | impexp | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ( ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 9 |  | r19.35 | ⊢ ( ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  ↔  ( ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) | 
						
							| 10 | 9 | imbi2i | ⊢ ( ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ( ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 11 | 8 10 | bitr4i | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 12 | 11 | albii | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  ↔  ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 13 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 14 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝐿 ‘ 𝑦 )  =  ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 16 | 15 | breq1d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ↔  ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 ) ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘  ↔  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 21 | 13 14 20 | axcc4 | ⊢ ( ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 22 | 21 | con3i | ⊢ ( ¬  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  →  ¬  ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 23 |  | dfrex2 | ⊢ ( ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  ↔  ¬  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) | 
						
							| 24 | 23 | imbi2i | ⊢ ( ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ¬  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 25 | 24 | albii | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  ↔  ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ¬  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 26 |  | alinexa | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ¬  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  ↔  ¬  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  ↔  ¬  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ¬  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) ) ) | 
						
							| 28 |  | dfral2 | ⊢ ( ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ¬  ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 29 | 28 | rexbii | ⊢ ( ∃ 𝑘  ∈  ℕ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ∃ 𝑘  ∈  ℕ ¬  ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 30 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  ℕ ¬  ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ¬  ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑘  ∈  ℕ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  ↔  ¬  ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 32 | 22 27 31 | 3imtr4i | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  →  ∃ 𝑘  ∈  ℕ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 33 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 34 | 33 | anim1i | ⊢ ( ( 𝑘  ∈  ℕ  ∧  ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) )  →  ( 𝑘  ∈  ℝ  ∧  ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) ) | 
						
							| 35 | 34 | reximi2 | ⊢ ( ∃ 𝑘  ∈  ℕ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 36 | 32 35 | syl | ⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∃ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 37 | 12 36 | sylbi | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ∃ 𝑘  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑘 ) ) ) | 
						
							| 39 | 37 38 | imbitrrid | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 )  →  ∃ 𝑘  ∈  ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) )  ≤  𝑘 ) )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ ) |