| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
| 2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
| 3 |
1 2
|
bdophsi |
⊢ ( 𝑆 +op 𝑇 ) ∈ BndLinOp |
| 4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 5 |
2
|
bdophmi |
⊢ ( - 1 ∈ ℂ → ( - 1 ·op 𝑇 ) ∈ BndLinOp ) |
| 6 |
4 5
|
ax-mp |
⊢ ( - 1 ·op 𝑇 ) ∈ BndLinOp |
| 7 |
3 6
|
nmoptrii |
⊢ ( normop ‘ ( ( 𝑆 +op 𝑇 ) +op ( - 1 ·op 𝑇 ) ) ) ≤ ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) + ( normop ‘ ( - 1 ·op 𝑇 ) ) ) |
| 8 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
| 9 |
1 8
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 10 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 11 |
2 10
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 12 |
9 11
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 13 |
12 11
|
honegsubi |
⊢ ( ( 𝑆 +op 𝑇 ) +op ( - 1 ·op 𝑇 ) ) = ( ( 𝑆 +op 𝑇 ) −op 𝑇 ) |
| 14 |
9 11
|
hopncani |
⊢ ( ( 𝑆 +op 𝑇 ) −op 𝑇 ) = 𝑆 |
| 15 |
13 14
|
eqtri |
⊢ ( ( 𝑆 +op 𝑇 ) +op ( - 1 ·op 𝑇 ) ) = 𝑆 |
| 16 |
15
|
fveq2i |
⊢ ( normop ‘ ( ( 𝑆 +op 𝑇 ) +op ( - 1 ·op 𝑇 ) ) ) = ( normop ‘ 𝑆 ) |
| 17 |
11
|
nmopnegi |
⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = ( normop ‘ 𝑇 ) |
| 18 |
17
|
oveq2i |
⊢ ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) + ( normop ‘ ( - 1 ·op 𝑇 ) ) ) = ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) + ( normop ‘ 𝑇 ) ) |
| 19 |
7 16 18
|
3brtr3i |
⊢ ( normop ‘ 𝑆 ) ≤ ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) + ( normop ‘ 𝑇 ) ) |
| 20 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
| 21 |
1 20
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
| 22 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 23 |
2 22
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 24 |
|
nmopre |
⊢ ( ( 𝑆 +op 𝑇 ) ∈ BndLinOp → ( normop ‘ ( 𝑆 +op 𝑇 ) ) ∈ ℝ ) |
| 25 |
3 24
|
ax-mp |
⊢ ( normop ‘ ( 𝑆 +op 𝑇 ) ) ∈ ℝ |
| 26 |
21 23 25
|
lesubaddi |
⊢ ( ( ( normop ‘ 𝑆 ) − ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝑆 +op 𝑇 ) ) ↔ ( normop ‘ 𝑆 ) ≤ ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) + ( normop ‘ 𝑇 ) ) ) |
| 27 |
19 26
|
mpbir |
⊢ ( ( normop ‘ 𝑆 ) − ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝑆 +op 𝑇 ) ) |