| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoptri.1 |
|- S e. BndLinOp |
| 2 |
|
nmoptri.2 |
|- T e. BndLinOp |
| 3 |
1 2
|
bdophsi |
|- ( S +op T ) e. BndLinOp |
| 4 |
|
neg1cn |
|- -u 1 e. CC |
| 5 |
2
|
bdophmi |
|- ( -u 1 e. CC -> ( -u 1 .op T ) e. BndLinOp ) |
| 6 |
4 5
|
ax-mp |
|- ( -u 1 .op T ) e. BndLinOp |
| 7 |
3 6
|
nmoptrii |
|- ( normop ` ( ( S +op T ) +op ( -u 1 .op T ) ) ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` ( -u 1 .op T ) ) ) |
| 8 |
|
bdopf |
|- ( S e. BndLinOp -> S : ~H --> ~H ) |
| 9 |
1 8
|
ax-mp |
|- S : ~H --> ~H |
| 10 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
| 11 |
2 10
|
ax-mp |
|- T : ~H --> ~H |
| 12 |
9 11
|
hoaddcli |
|- ( S +op T ) : ~H --> ~H |
| 13 |
12 11
|
honegsubi |
|- ( ( S +op T ) +op ( -u 1 .op T ) ) = ( ( S +op T ) -op T ) |
| 14 |
9 11
|
hopncani |
|- ( ( S +op T ) -op T ) = S |
| 15 |
13 14
|
eqtri |
|- ( ( S +op T ) +op ( -u 1 .op T ) ) = S |
| 16 |
15
|
fveq2i |
|- ( normop ` ( ( S +op T ) +op ( -u 1 .op T ) ) ) = ( normop ` S ) |
| 17 |
11
|
nmopnegi |
|- ( normop ` ( -u 1 .op T ) ) = ( normop ` T ) |
| 18 |
17
|
oveq2i |
|- ( ( normop ` ( S +op T ) ) + ( normop ` ( -u 1 .op T ) ) ) = ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) |
| 19 |
7 16 18
|
3brtr3i |
|- ( normop ` S ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) |
| 20 |
|
nmopre |
|- ( S e. BndLinOp -> ( normop ` S ) e. RR ) |
| 21 |
1 20
|
ax-mp |
|- ( normop ` S ) e. RR |
| 22 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
| 23 |
2 22
|
ax-mp |
|- ( normop ` T ) e. RR |
| 24 |
|
nmopre |
|- ( ( S +op T ) e. BndLinOp -> ( normop ` ( S +op T ) ) e. RR ) |
| 25 |
3 24
|
ax-mp |
|- ( normop ` ( S +op T ) ) e. RR |
| 26 |
21 23 25
|
lesubaddi |
|- ( ( ( normop ` S ) - ( normop ` T ) ) <_ ( normop ` ( S +op T ) ) <-> ( normop ` S ) <_ ( ( normop ` ( S +op T ) ) + ( normop ` T ) ) ) |
| 27 |
19 26
|
mpbir |
|- ( ( normop ` S ) - ( normop ` T ) ) <_ ( normop ` ( S +op T ) ) |