| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmophm.1 |
|- T e. BndLinOp |
| 2 |
|
bdopln |
|- ( T e. BndLinOp -> T e. LinOp ) |
| 3 |
1 2
|
ax-mp |
|- T e. LinOp |
| 4 |
3
|
lnopmi |
|- ( A e. CC -> ( A .op T ) e. LinOp ) |
| 5 |
1
|
nmophmi |
|- ( A e. CC -> ( normop ` ( A .op T ) ) = ( ( abs ` A ) x. ( normop ` T ) ) ) |
| 6 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 7 |
|
nmopre |
|- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
| 8 |
1 7
|
ax-mp |
|- ( normop ` T ) e. RR |
| 9 |
|
remulcl |
|- ( ( ( abs ` A ) e. RR /\ ( normop ` T ) e. RR ) -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 10 |
6 8 9
|
sylancl |
|- ( A e. CC -> ( ( abs ` A ) x. ( normop ` T ) ) e. RR ) |
| 11 |
5 10
|
eqeltrd |
|- ( A e. CC -> ( normop ` ( A .op T ) ) e. RR ) |
| 12 |
|
elbdop2 |
|- ( ( A .op T ) e. BndLinOp <-> ( ( A .op T ) e. LinOp /\ ( normop ` ( A .op T ) ) e. RR ) ) |
| 13 |
4 11 12
|
sylanbrc |
|- ( A e. CC -> ( A .op T ) e. BndLinOp ) |