| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 | 1 2 3 4 5 6 7 | nmounbi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  =  +∞  ↔  ∀ 𝑘  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑁 ‘ 𝑇 )  =  +∞ )  →  ∀ 𝑘  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 10 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 11 | 10 | imim1i | ⊢ ( ( 𝑘  ∈  ℝ  →  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) )  →  ( 𝑘  ∈  ℕ  →  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 12 | 11 | ralimi2 | ⊢ ( ∀ 𝑘  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  →  ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 13 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 14 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝐿 ‘ 𝑦 )  =  ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 16 | 15 | breq1d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ↔  ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1 ) ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  =  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( 𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ↔  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) | 
						
							| 19 | 16 18 | anbi12d | ⊢ ( 𝑦  =  ( 𝑓 ‘ 𝑘 )  →  ( ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 20 | 13 14 19 | axcc4 | ⊢ ( ∀ 𝑘  ∈  ℕ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 21 | 9 12 20 | 3syl | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑁 ‘ 𝑇 )  =  +∞ )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  ∧  ∀ 𝑘  ∈  ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) )  ≤  1  ∧  𝑘  <  ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |