Metamath Proof Explorer


Theorem nmounbi

Description: Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
nmoubi.l 𝐿 = ( normCV𝑈 )
nmoubi.m 𝑀 = ( normCV𝑊 )
nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion nmounbi ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) = +∞ ↔ ∀ 𝑟 ∈ ℝ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
3 nmoubi.l 𝐿 = ( normCV𝑈 )
4 nmoubi.m 𝑀 = ( normCV𝑊 )
5 nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
6 nmoubi.u 𝑈 ∈ NrmCVec
7 nmoubi.w 𝑊 ∈ NrmCVec
8 1 2 3 4 5 6 7 nmobndi ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )
9 1 2 5 nmorepnf ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ( 𝑁𝑇 ) ≠ +∞ ) )
10 6 7 9 mp3an12 ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ( 𝑁𝑇 ) ≠ +∞ ) )
11 ffvelrn ( ( 𝑇 : 𝑋𝑌𝑦𝑋 ) → ( 𝑇𝑦 ) ∈ 𝑌 )
12 2 4 nvcl ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇𝑦 ) ∈ 𝑌 ) → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ∈ ℝ )
13 7 11 12 sylancr ( ( 𝑇 : 𝑋𝑌𝑦𝑋 ) → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ∈ ℝ )
14 lenlt ( ( ( 𝑀 ‘ ( 𝑇𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
15 13 14 sylan ( ( ( 𝑇 : 𝑋𝑌𝑦𝑋 ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
16 15 an32s ( ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) ∧ 𝑦𝑋 ) → ( ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
17 16 imbi2d ( ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) ∧ 𝑦𝑋 ) → ( ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ( ( 𝐿𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
18 imnan ( ( ( 𝐿𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ↔ ¬ ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
19 17 18 bitrdi ( ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) ∧ 𝑦𝑋 ) → ( ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
20 19 ralbidva ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) → ( ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ∀ 𝑦𝑋 ¬ ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
21 ralnex ( ∀ 𝑦𝑋 ¬ ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ↔ ¬ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
22 20 21 bitrdi ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) → ( ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
23 22 rexbidva ( 𝑇 : 𝑋𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
24 rexnal ( ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) )
25 23 24 bitrdi ( 𝑇 : 𝑋𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
26 8 10 25 3bitr3d ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ≠ +∞ ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )
27 26 necon4abid ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) = +∞ ↔ ∀ 𝑟 ∈ ℝ ∃ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇𝑦 ) ) ) ) )