Metamath Proof Explorer


Theorem nmoval

Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Revised by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
nmofval.2 𝑉 = ( Base ‘ 𝑆 )
nmofval.3 𝐿 = ( norm ‘ 𝑆 )
nmofval.4 𝑀 = ( norm ‘ 𝑇 )
Assertion nmoval ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
2 nmofval.2 𝑉 = ( Base ‘ 𝑆 )
3 nmofval.3 𝐿 = ( norm ‘ 𝑆 )
4 nmofval.4 𝑀 = ( norm ‘ 𝑇 )
5 1 2 3 4 nmofval ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ) )
6 5 fveq1d ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁𝐹 ) = ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) )
7 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
8 7 fveq2d ( 𝑓 = 𝐹 → ( 𝑀 ‘ ( 𝑓𝑥 ) ) = ( 𝑀 ‘ ( 𝐹𝑥 ) ) )
9 8 breq1d ( 𝑓 = 𝐹 → ( ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) ) )
10 9 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) ↔ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) ) )
11 10 rabbidv ( 𝑓 = 𝐹 → { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } = { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } )
12 11 infeq1d ( 𝑓 = 𝐹 → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )
13 eqid ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )
14 xrltso < Or ℝ*
15 14 infex inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ∈ V
16 12 13 15 fvmpt ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝑓𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )
17 6 16 sylan9eq ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )
18 17 3impa ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )