| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 2 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 5 |  | 2pos | ⊢ 0  <  2 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  0  <  2 ) | 
						
							| 7 |  | ge0div | ⊢ ( ( 𝑁  ∈  ℝ  ∧  2  ∈  ℝ  ∧  0  <  2 )  →  ( 0  ≤  𝑁  ↔  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0  ≤  𝑁  ↔  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 9 | 1 8 | mpbid | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( 𝑁  /  2 ) ) | 
						
							| 10 |  | evendiv2z | ⊢ ( 𝑁  ∈   Even   →  ( 𝑁  /  2 )  ∈  ℤ ) | 
						
							| 11 | 9 10 | anim12ci | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Even  )  →  ( ( 𝑁  /  2 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 12 |  | elnn0z | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  ↔  ( ( 𝑁  /  2 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Even  )  →  ( 𝑁  /  2 )  ∈  ℕ0 ) |