| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 2 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 3 |  | 2re |  |-  2 e. RR | 
						
							| 4 | 3 | a1i |  |-  ( N e. NN0 -> 2 e. RR ) | 
						
							| 5 |  | 2pos |  |-  0 < 2 | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN0 -> 0 < 2 ) | 
						
							| 7 |  | ge0div |  |-  ( ( N e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 <_ N <-> 0 <_ ( N / 2 ) ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc |  |-  ( N e. NN0 -> ( 0 <_ N <-> 0 <_ ( N / 2 ) ) ) | 
						
							| 9 | 1 8 | mpbid |  |-  ( N e. NN0 -> 0 <_ ( N / 2 ) ) | 
						
							| 10 |  | evendiv2z |  |-  ( N e. Even -> ( N / 2 ) e. ZZ ) | 
						
							| 11 | 9 10 | anim12ci |  |-  ( ( N e. NN0 /\ N e. Even ) -> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) | 
						
							| 12 |  | elnn0z |  |-  ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( ( N e. NN0 /\ N e. Even ) -> ( N / 2 ) e. NN0 ) |