Metamath Proof Explorer


Theorem nneven

Description: An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion nneven
|- ( ( N e. NN /\ N e. Even ) -> ( N / 2 ) e. NN )

Proof

Step Hyp Ref Expression
1 nnre
 |-  ( N e. NN -> N e. RR )
2 2re
 |-  2 e. RR
3 2 a1i
 |-  ( N e. NN -> 2 e. RR )
4 nngt0
 |-  ( N e. NN -> 0 < N )
5 2pos
 |-  0 < 2
6 5 a1i
 |-  ( N e. NN -> 0 < 2 )
7 1 3 4 6 divgt0d
 |-  ( N e. NN -> 0 < ( N / 2 ) )
8 evendiv2z
 |-  ( N e. Even -> ( N / 2 ) e. ZZ )
9 7 8 anim12ci
 |-  ( ( N e. NN /\ N e. Even ) -> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) )
10 elnnz
 |-  ( ( N / 2 ) e. NN <-> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) )
11 9 10 sylibr
 |-  ( ( N e. NN /\ N e. Even ) -> ( N / 2 ) e. NN )