| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 4 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 5 |  | 2pos |  |-  0 < 2 | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN -> 0 < 2 ) | 
						
							| 7 | 1 3 4 6 | divgt0d |  |-  ( N e. NN -> 0 < ( N / 2 ) ) | 
						
							| 8 |  | evendiv2z |  |-  ( N e. Even -> ( N / 2 ) e. ZZ ) | 
						
							| 9 | 7 8 | anim12ci |  |-  ( ( N e. NN /\ N e. Even ) -> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) | 
						
							| 10 |  | elnnz |  |-  ( ( N / 2 ) e. NN <-> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( N e. NN /\ N e. Even ) -> ( N / 2 ) e. NN ) |