| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0oALTV |  |-  ( ( N e. NN0 /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN0 ) | 
						
							| 2 |  | simpr |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) | 
						
							| 3 |  | oveq2 |  |-  ( m = ( ( N - 1 ) / 2 ) -> ( 2 x. m ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( m = ( ( N - 1 ) / 2 ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 5 | 4 | eqeq2d |  |-  ( m = ( ( N - 1 ) / 2 ) -> ( N = ( ( 2 x. m ) + 1 ) <-> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) /\ m = ( ( N - 1 ) / 2 ) ) -> ( N = ( ( 2 x. m ) + 1 ) <-> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) ) | 
						
							| 7 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 8 |  | peano2cnm |  |-  ( N e. CC -> ( N - 1 ) e. CC ) | 
						
							| 9 | 7 8 | syl |  |-  ( N e. NN0 -> ( N - 1 ) e. CC ) | 
						
							| 10 |  | 2cnd |  |-  ( N e. NN0 -> 2 e. CC ) | 
						
							| 11 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 12 | 11 | a1i |  |-  ( N e. NN0 -> 2 =/= 0 ) | 
						
							| 13 | 9 10 12 | divcan2d |  |-  ( N e. NN0 -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( N e. NN0 -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 15 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 16 | 7 15 | syl |  |-  ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 17 | 14 16 | eqtr2d |  |-  ( N e. NN0 -> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> N = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 19 | 2 6 18 | rspcedvd |  |-  ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> E. m e. NN0 N = ( ( 2 x. m ) + 1 ) ) | 
						
							| 20 | 1 19 | syldan |  |-  ( ( N e. NN0 /\ N e. Odd ) -> E. m e. NN0 N = ( ( 2 x. m ) + 1 ) ) |