| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddm1div2z |  |-  ( N e. Odd -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. NN0 /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 3 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 4 |  | nnm1ge0 |  |-  ( N e. NN -> 0 <_ ( N - 1 ) ) | 
						
							| 5 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 6 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 7 | 5 6 | syl |  |-  ( N e. NN -> ( N - 1 ) e. RR ) | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 10 |  | 2pos |  |-  0 < 2 | 
						
							| 11 | 10 | a1i |  |-  ( N e. NN -> 0 < 2 ) | 
						
							| 12 |  | ge0div |  |-  ( ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc |  |-  ( N e. NN -> ( 0 <_ ( N - 1 ) <-> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 14 | 4 13 | mpbid |  |-  ( N e. NN -> 0 <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 15 | 14 | a1d |  |-  ( N e. NN -> ( N e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 16 |  | eleq1 |  |-  ( N = 0 -> ( N e. Odd <-> 0 e. Odd ) ) | 
						
							| 17 |  | 0noddALTV |  |-  0 e/ Odd | 
						
							| 18 |  | df-nel |  |-  ( 0 e/ Odd <-> -. 0 e. Odd ) | 
						
							| 19 |  | pm2.21 |  |-  ( -. 0 e. Odd -> ( 0 e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 20 | 18 19 | sylbi |  |-  ( 0 e/ Odd -> ( 0 e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 21 | 17 20 | ax-mp |  |-  ( 0 e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 22 | 16 21 | biimtrdi |  |-  ( N = 0 -> ( N e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 23 | 15 22 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( N e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 24 | 3 23 | sylbi |  |-  ( N e. NN0 -> ( N e. Odd -> 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( N e. NN0 /\ N e. Odd ) -> 0 <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 26 |  | elnn0z |  |-  ( ( ( N - 1 ) / 2 ) e. NN0 <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 27 | 2 25 26 | sylanbrc |  |-  ( ( N e. NN0 /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |