| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddm1div2z | ⊢ ( 𝑁  ∈   Odd   →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Odd  )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 3 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 4 |  | nnm1ge0 | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( 𝑁  −  1 ) ) | 
						
							| 5 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 6 |  | peano2rem | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℝ ) | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  2 ) | 
						
							| 12 |  | ge0div | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℝ  ∧  2  ∈  ℝ  ∧  0  <  2 )  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  ≤  ( 𝑁  −  1 )  ↔  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 14 | 4 13 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 15 | 14 | a1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈   Odd   ↔  0  ∈   Odd  ) ) | 
						
							| 17 |  | 0noddALTV | ⊢ 0  ∉   Odd | 
						
							| 18 |  | df-nel | ⊢ ( 0  ∉   Odd   ↔  ¬  0  ∈   Odd  ) | 
						
							| 19 |  | pm2.21 | ⊢ ( ¬  0  ∈   Odd   →  ( 0  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 20 | 18 19 | sylbi | ⊢ ( 0  ∉   Odd   →  ( 0  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 21 | 17 20 | ax-mp | ⊢ ( 0  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 22 | 16 21 | biimtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 23 | 15 22 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( 𝑁  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 24 | 3 23 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈   Odd   →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Odd  )  →  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 26 |  | elnn0z | ⊢ ( ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0  ↔  ( ( ( 𝑁  −  1 )  /  2 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑁  −  1 )  /  2 ) ) ) | 
						
							| 27 | 2 25 26 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Odd  )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) |