Description: An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneven | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( 𝑁 / 2 ) ∈ ℕ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) | 
| 4 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 5 | 2pos | ⊢ 0 < 2 | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ → 0 < 2 ) | 
| 7 | 1 3 4 6 | divgt0d | ⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 / 2 ) ) | 
| 8 | evendiv2z | ⊢ ( 𝑁 ∈ Even → ( 𝑁 / 2 ) ∈ ℤ ) | |
| 9 | 7 8 | anim12ci | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) | 
| 10 | elnnz | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 < ( 𝑁 / 2 ) ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ( 𝑁 / 2 ) ∈ ℕ ) |