| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | addsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  −  1 )  =  ( ( 𝐴  −  1 )  +  𝐵 ) ) | 
						
							| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  𝐵 )  −  1 )  =  ( ( 𝐴  −  1 )  +  𝐵 ) ) | 
						
							| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  +  𝐵 )  −  1 )  =  ( ( 𝐴  −  1 )  +  𝐵 ) ) | 
						
							| 7 |  | nnm1nn0 | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  −  1 )  ∈  ℕ0 ) | 
						
							| 8 |  | nn0nnaddcl | ⊢ ( ( ( 𝐴  −  1 )  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  −  1 )  +  𝐵 )  ∈  ℕ ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  −  1 )  +  𝐵 )  ∈  ℕ ) | 
						
							| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  +  𝐵 )  −  1 )  ∈  ℕ ) |