| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
| 2 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 4 |
|
addsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) |
| 5 |
3 4
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) |
| 6 |
1 2 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) − 1 ) = ( ( 𝐴 − 1 ) + 𝐵 ) ) |
| 7 |
|
nnm1nn0 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 − 1 ) ∈ ℕ0 ) |
| 8 |
|
nn0nnaddcl |
⊢ ( ( ( 𝐴 − 1 ) ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝐵 ) ∈ ℕ ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 − 1 ) + 𝐵 ) ∈ ℕ ) |
| 10 |
6 9
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 + 𝐵 ) − 1 ) ∈ ℕ ) |