| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( A e. NN -> A e. CC ) | 
						
							| 2 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | addsub |  |-  ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) | 
						
							| 5 | 3 4 | mp3an3 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) | 
						
							| 6 | 1 2 5 | syl2an |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A + B ) - 1 ) = ( ( A - 1 ) + B ) ) | 
						
							| 7 |  | nnm1nn0 |  |-  ( A e. NN -> ( A - 1 ) e. NN0 ) | 
						
							| 8 |  | nn0nnaddcl |  |-  ( ( ( A - 1 ) e. NN0 /\ B e. NN ) -> ( ( A - 1 ) + B ) e. NN ) | 
						
							| 9 | 7 8 | sylan |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A - 1 ) + B ) e. NN ) | 
						
							| 10 | 6 9 | eqeltrd |  |-  ( ( A e. NN /\ B e. NN ) -> ( ( A + B ) - 1 ) e. NN ) |