| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 / 2 ) ∈ ℕ ) → ( 𝑁 / 2 ) ∈ ℕ ) |
| 2 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑁 / 2 ) → ( 2 · 𝑚 ) = ( 2 · ( 𝑁 / 2 ) ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑁 / 2 ) → ( 𝑁 = ( 2 · 𝑚 ) ↔ 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) ) |
| 4 |
3
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 / 2 ) ∈ ℕ ) ∧ 𝑚 = ( 𝑁 / 2 ) ) → ( 𝑁 = ( 2 · 𝑚 ) ↔ 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) ) |
| 5 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 6 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 7 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 9 |
|
divcan2 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
| 10 |
9
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) |
| 11 |
5 6 8 10
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 / 2 ) ∈ ℕ ) → 𝑁 = ( 2 · ( 𝑁 / 2 ) ) ) |
| 13 |
1 4 12
|
rspcedvd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 / 2 ) ∈ ℕ ) → ∃ 𝑚 ∈ ℕ 𝑁 = ( 2 · 𝑚 ) ) |