Metamath Proof Explorer


Theorem notzfausOLD

Description: Obsolete proof of notzfaus as of 18-Nov-2023. (Contributed by NM, 8-Feb-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses notzfaus.1 𝐴 = { ∅ }
notzfaus.2 ( 𝜑 ↔ ¬ 𝑥𝑦 )
Assertion notzfausOLD ¬ ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 notzfaus.1 𝐴 = { ∅ }
2 notzfaus.2 ( 𝜑 ↔ ¬ 𝑥𝑦 )
3 0ex ∅ ∈ V
4 3 snnz { ∅ } ≠ ∅
5 1 4 eqnetri 𝐴 ≠ ∅
6 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
7 5 6 mpbi 𝑥 𝑥𝐴
8 biimt ( 𝑥𝐴 → ( 𝑥𝑦 ↔ ( 𝑥𝐴𝑥𝑦 ) ) )
9 iman ( ( 𝑥𝐴𝑥𝑦 ) ↔ ¬ ( 𝑥𝐴 ∧ ¬ 𝑥𝑦 ) )
10 2 anbi2i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝑦 ) )
11 9 10 xchbinxr ( ( 𝑥𝐴𝑥𝑦 ) ↔ ¬ ( 𝑥𝐴𝜑 ) )
12 8 11 bitrdi ( 𝑥𝐴 → ( 𝑥𝑦 ↔ ¬ ( 𝑥𝐴𝜑 ) ) )
13 xor3 ( ¬ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ¬ ( 𝑥𝐴𝜑 ) ) )
14 12 13 sylibr ( 𝑥𝐴 → ¬ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) )
15 7 14 eximii 𝑥 ¬ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )
16 exnal ( ∃ 𝑥 ¬ ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) ) )
17 15 16 mpbi ¬ ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )
18 17 nex ¬ ∃ 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝐴𝜑 ) )