Step |
Hyp |
Ref |
Expression |
1 |
|
notzfaus.1 |
⊢ 𝐴 = { ∅ } |
2 |
|
notzfaus.2 |
⊢ ( 𝜑 ↔ ¬ 𝑥 ∈ 𝑦 ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
3
|
snnz |
⊢ { ∅ } ≠ ∅ |
5 |
1 4
|
eqnetri |
⊢ 𝐴 ≠ ∅ |
6 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
7 |
5 6
|
mpbi |
⊢ ∃ 𝑥 𝑥 ∈ 𝐴 |
8 |
|
biimt |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ) ) |
9 |
|
iman |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦 ) ) |
10 |
2
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦 ) ) |
11 |
9 10
|
xchbinxr |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
12 |
8 11
|
bitrdi |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝑦 ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
13 |
|
xor3 |
⊢ ( ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
14 |
12 13
|
sylibr |
⊢ ( 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
15 |
7 14
|
eximii |
⊢ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
16 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
17 |
15 16
|
mpbi |
⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
18 |
17
|
nex |
⊢ ¬ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |