Metamath Proof Explorer


Theorem notzfausOLD

Description: Obsolete proof of notzfaus as of 18-Nov-2023. (Contributed by NM, 8-Feb-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses notzfaus.1 A =
notzfaus.2 φ ¬ x y
Assertion notzfausOLD ¬ y x x y x A φ

Proof

Step Hyp Ref Expression
1 notzfaus.1 A =
2 notzfaus.2 φ ¬ x y
3 0ex V
4 3 snnz
5 1 4 eqnetri A
6 n0 A x x A
7 5 6 mpbi x x A
8 biimt x A x y x A x y
9 iman x A x y ¬ x A ¬ x y
10 2 anbi2i x A φ x A ¬ x y
11 9 10 xchbinxr x A x y ¬ x A φ
12 8 11 bitrdi x A x y ¬ x A φ
13 xor3 ¬ x y x A φ x y ¬ x A φ
14 12 13 sylibr x A ¬ x y x A φ
15 7 14 eximii x ¬ x y x A φ
16 exnal x ¬ x y x A φ ¬ x x y x A φ
17 15 16 mpbi ¬ x x y x A φ
18 17 nex ¬ y x x y x A φ