Metamath Proof Explorer


Theorem nrmtngnrm

Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis nrmtngdist.t 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) )
Assertion nrmtngnrm ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 nrmtngdist.t 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) )
2 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 1 3 nrmtngdist ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) )
5 eqid ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
6 3 5 ngpmet ( 𝐺 ∈ NrmGrp → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) )
7 4 6 eqeltrd ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) )
8 eqid ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 )
9 3 8 nmf ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ )
10 eqid ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 )
11 1 3 10 tngngp2 ( ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) )
12 9 11 syl ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) )
13 2 7 12 mpbir2and ( 𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp )
14 2 9 jca ( 𝐺 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) )
15 reex ℝ ∈ V
16 1 3 15 tngnm ( ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) )
17 14 16 syl ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) )
18 17 eqcomd ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) )
19 13 18 jca ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) )