Metamath Proof Explorer


Theorem nrmtngnrm

Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis nrmtngdist.t T = G toNrmGrp norm G
Assertion nrmtngnrm G NrmGrp T NrmGrp norm T = norm G

Proof

Step Hyp Ref Expression
1 nrmtngdist.t T = G toNrmGrp norm G
2 ngpgrp G NrmGrp G Grp
3 eqid Base G = Base G
4 1 3 nrmtngdist G NrmGrp dist T = dist G Base G × Base G
5 eqid dist G Base G × Base G = dist G Base G × Base G
6 3 5 ngpmet G NrmGrp dist G Base G × Base G Met Base G
7 4 6 eqeltrd G NrmGrp dist T Met Base G
8 eqid norm G = norm G
9 3 8 nmf G NrmGrp norm G : Base G
10 eqid dist T = dist T
11 1 3 10 tngngp2 norm G : Base G T NrmGrp G Grp dist T Met Base G
12 9 11 syl G NrmGrp T NrmGrp G Grp dist T Met Base G
13 2 7 12 mpbir2and G NrmGrp T NrmGrp
14 2 9 jca G NrmGrp G Grp norm G : Base G
15 reex V
16 1 3 15 tngnm G Grp norm G : Base G norm G = norm T
17 14 16 syl G NrmGrp norm G = norm T
18 17 eqcomd G NrmGrp norm T = norm G
19 13 18 jca G NrmGrp T NrmGrp norm T = norm G