Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tngngpim.t | |
|
tngngpim.n | |
||
tngngpim.x | |
||
tngngpim.d | |
||
Assertion | tngngpim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngngpim.t | |
|
2 | tngngpim.n | |
|
3 | tngngpim.x | |
|
4 | tngngpim.d | |
|
5 | 3 2 | nmf | |
6 | 2 | oveq2i | |
7 | 1 6 | eqtri | |
8 | 7 | nrmtngnrm | |
9 | 1 3 4 | tngngp2 | |
10 | simpr | |
|
11 | 9 10 | syl6bi | |
12 | 11 | com12 | |
13 | 12 | adantr | |
14 | 8 13 | syl | |
15 | metf | |
|
16 | 14 15 | syl6 | |
17 | 5 16 | mpd | |