Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmf.x | |
|
nmf.n | |
||
Assertion | nmf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmf.x | |
|
2 | nmf.n | |
|
3 | ngpgrp | |
|
4 | eqid | |
|
5 | 1 4 | ngpmet | |
6 | eqid | |
|
7 | 2 1 6 4 | nmf2 | |
8 | 3 5 7 | syl2anc | |