Metamath Proof Explorer


Theorem nmf

Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
Assertion nmf GNrmGrpN:X

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 ngpgrp GNrmGrpGGrp
4 eqid distGX×X=distGX×X
5 1 4 ngpmet GNrmGrpdistGX×XMetX
6 eqid distG=distG
7 2 1 6 4 nmf2 GGrpdistGX×XMetXN:X
8 3 5 7 syl2anc GNrmGrpN:X