Metamath Proof Explorer


Theorem nrmtngdist

Description: The augmentation of a normed group by its own norm has the same distance function as the normed group (restricted to the base set). (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypotheses nrmtngdist.t T=GtoNrmGrpnormG
nrmtngdist.x X=BaseG
Assertion nrmtngdist GNrmGrpdistT=distGX×X

Proof

Step Hyp Ref Expression
1 nrmtngdist.t T=GtoNrmGrpnormG
2 nrmtngdist.x X=BaseG
3 fvex normGV
4 eqid -G=-G
5 1 4 tngds normGVnormG-G=distT
6 3 5 ax-mp normG-G=distT
7 eqid normG=normG
8 eqid distG=distG
9 eqid distGX×X=distGX×X
10 7 4 8 2 9 isngp2 GNrmGrpGGrpGMetSpnormG-G=distGX×X
11 10 simp3bi GNrmGrpnormG-G=distGX×X
12 6 11 eqtr3id GNrmGrpdistT=distGX×X