Step |
Hyp |
Ref |
Expression |
1 |
|
isnsg.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
isnsg.2 |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
1 2
|
isnsg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝑦 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 + 𝑦 ) ∈ 𝑆 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝐴 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ) |
9 |
6 8
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 + 𝐵 ) ∈ 𝑆 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 + 𝐴 ) = ( 𝐵 + 𝐴 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 + 𝐴 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
14 |
11 13
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
15 |
9 14
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
16 |
4 15
|
syl5com |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
17 |
16
|
3impib |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |