Metamath Proof Explorer


Theorem nsgbi

Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses isnsg.1 X=BaseG
isnsg.2 +˙=+G
Assertion nsgbi SNrmSGrpGAXBXA+˙BSB+˙AS

Proof

Step Hyp Ref Expression
1 isnsg.1 X=BaseG
2 isnsg.2 +˙=+G
3 1 2 isnsg SNrmSGrpGSSubGrpGxXyXx+˙ySy+˙xS
4 3 simprbi SNrmSGrpGxXyXx+˙ySy+˙xS
5 oveq1 x=Ax+˙y=A+˙y
6 5 eleq1d x=Ax+˙ySA+˙yS
7 oveq2 x=Ay+˙x=y+˙A
8 7 eleq1d x=Ay+˙xSy+˙AS
9 6 8 bibi12d x=Ax+˙ySy+˙xSA+˙ySy+˙AS
10 oveq2 y=BA+˙y=A+˙B
11 10 eleq1d y=BA+˙ySA+˙BS
12 oveq1 y=By+˙A=B+˙A
13 12 eleq1d y=By+˙ASB+˙AS
14 11 13 bibi12d y=BA+˙ySy+˙ASA+˙BSB+˙AS
15 9 14 rspc2v AXBXxXyXx+˙ySy+˙xSA+˙BSB+˙AS
16 4 15 syl5com SNrmSGrpGAXBXA+˙BSB+˙AS
17 16 3impib SNrmSGrpGAXBXA+˙BSB+˙AS