Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numthcor | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑦 ≺ 𝑥 ↔ ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) ) |
| 3 | vpwex | ⊢ 𝒫 𝑦 ∈ V | |
| 4 | 3 | numth2 | ⊢ ∃ 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | canth2 | ⊢ 𝑦 ≺ 𝒫 𝑦 |
| 7 | ensym | ⊢ ( 𝑥 ≈ 𝒫 𝑦 → 𝒫 𝑦 ≈ 𝑥 ) | |
| 8 | sdomentr | ⊢ ( ( 𝑦 ≺ 𝒫 𝑦 ∧ 𝒫 𝑦 ≈ 𝑥 ) → 𝑦 ≺ 𝑥 ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( 𝑥 ≈ 𝒫 𝑦 → 𝑦 ≺ 𝑥 ) |
| 10 | 9 | reximi | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 → ∃ 𝑥 ∈ On 𝑦 ≺ 𝑥 ) |
| 11 | 4 10 | ax-mp | ⊢ ∃ 𝑥 ∈ On 𝑦 ≺ 𝑥 |
| 12 | 2 11 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |