| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcgra2.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
dfcgra2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
dfcgra2.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 4 |
|
dfcgra2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
dfcgra2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
dfcgra2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
dfcgra2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
dfcgra2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
dfcgra2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
dfcgra2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
oacgr.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 12 |
|
oacgr.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐶 𝐼 𝐹 ) ) |
| 13 |
|
oacgr.3 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 14 |
|
oacgr.4 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 15 |
|
oacgr.5 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐷 ) |
| 16 |
|
oacgr.6 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐹 ) |
| 17 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
| 18 |
13
|
necomd |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 19 |
1 2 4 17 5 6 7 18 14
|
cgraswap |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ) |
| 20 |
16
|
necomd |
⊢ ( 𝜑 → 𝐹 ≠ 𝐵 ) |
| 21 |
1 2 4 17 10 6 5 20 13
|
cgraswap |
⊢ ( 𝜑 → 〈“ 𝐹 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐹 ”〉 ) |
| 22 |
1 3 2 4 7 6 10 12
|
tgbtwncom |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 𝐼 𝐶 ) ) |
| 23 |
1 2 3 4 10 6 5 5 6 10 7 8 21 22 11 14 15
|
sacgr |
⊢ ( 𝜑 → 〈“ 𝐶 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 ) |
| 24 |
1 2 4 17 5 6 7 7 6 5 19 8 6 10 23
|
cgratr |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 ) |