| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgra2.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | dfcgra2.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | dfcgra2.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 4 |  | dfcgra2.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | dfcgra2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | dfcgra2.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | dfcgra2.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | dfcgra2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | dfcgra2.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | dfcgra2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | oacgr.1 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 12 |  | oacgr.2 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐶 𝐼 𝐹 ) ) | 
						
							| 13 |  | oacgr.3 | ⊢ ( 𝜑  →  𝐵  ≠  𝐴 ) | 
						
							| 14 |  | oacgr.4 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 15 |  | oacgr.5 | ⊢ ( 𝜑  →  𝐵  ≠  𝐷 ) | 
						
							| 16 |  | oacgr.6 | ⊢ ( 𝜑  →  𝐵  ≠  𝐹 ) | 
						
							| 17 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 18 | 13 | necomd | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 19 | 1 2 4 17 5 6 7 18 14 | cgraswap | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐶 𝐵 𝐴 ”〉 ) | 
						
							| 20 | 16 | necomd | ⊢ ( 𝜑  →  𝐹  ≠  𝐵 ) | 
						
							| 21 | 1 2 4 17 10 6 5 20 13 | cgraswap | ⊢ ( 𝜑  →  〈“ 𝐹 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐹 ”〉 ) | 
						
							| 22 | 1 3 2 4 7 6 10 12 | tgbtwncom | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐹 𝐼 𝐶 ) ) | 
						
							| 23 | 1 2 3 4 10 6 5 5 6 10 7 8 21 22 11 14 15 | sacgr | ⊢ ( 𝜑  →  〈“ 𝐶 𝐵 𝐴 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 ) | 
						
							| 24 | 1 2 4 17 5 6 7 7 6 5 19 8 6 10 23 | cgratr | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐵 𝐹 ”〉 ) |