| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odhash.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odhash.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 5 | 1 4 2 3 | odf1o1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 6 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 7 | 6 | f1oen | ⊢ ( ( 𝑥  ∈  ℤ  ↦  ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } )  →  ℤ  ≈  ( 𝐾 ‘ { 𝐴 } ) ) | 
						
							| 8 |  | hasheni | ⊢ ( ℤ  ≈  ( 𝐾 ‘ { 𝐴 } )  →  ( ♯ ‘ ℤ )  =  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 9 | 5 7 8 | 3syl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ♯ ‘ ℤ )  =  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | 
						
							| 10 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 11 |  | znnen | ⊢ ℤ  ≈  ℕ | 
						
							| 12 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 13 | 11 12 | entri | ⊢ ℤ  ≈  ω | 
						
							| 14 |  | enfi | ⊢ ( ℤ  ≈  ω  →  ( ℤ  ∈  Fin  ↔  ω  ∈  Fin ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( ℤ  ∈  Fin  ↔  ω  ∈  Fin ) | 
						
							| 16 | 10 15 | mtbir | ⊢ ¬  ℤ  ∈  Fin | 
						
							| 17 |  | hashinf | ⊢ ( ( ℤ  ∈  V  ∧  ¬  ℤ  ∈  Fin )  →  ( ♯ ‘ ℤ )  =  +∞ ) | 
						
							| 18 | 6 16 17 | mp2an | ⊢ ( ♯ ‘ ℤ )  =  +∞ | 
						
							| 19 | 9 18 | eqtr3di | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐴  ∈  𝑋  ∧  ( 𝑂 ‘ 𝐴 )  =  0 )  →  ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) )  =  +∞ ) |