| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odhash.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | odhash.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 4 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 5 | 1 4 2 3 | odf1o1 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) | 
						
							| 6 |  | zex |  |-  ZZ e. _V | 
						
							| 7 | 6 | f1oen |  |-  ( ( x e. ZZ |-> ( x ( .g ` G ) A ) ) : ZZ -1-1-onto-> ( K ` { A } ) -> ZZ ~~ ( K ` { A } ) ) | 
						
							| 8 |  | hasheni |  |-  ( ZZ ~~ ( K ` { A } ) -> ( # ` ZZ ) = ( # ` ( K ` { A } ) ) ) | 
						
							| 9 | 5 7 8 | 3syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ZZ ) = ( # ` ( K ` { A } ) ) ) | 
						
							| 10 |  | ominf |  |-  -. _om e. Fin | 
						
							| 11 |  | znnen |  |-  ZZ ~~ NN | 
						
							| 12 |  | nnenom |  |-  NN ~~ _om | 
						
							| 13 | 11 12 | entri |  |-  ZZ ~~ _om | 
						
							| 14 |  | enfi |  |-  ( ZZ ~~ _om -> ( ZZ e. Fin <-> _om e. Fin ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( ZZ e. Fin <-> _om e. Fin ) | 
						
							| 16 | 10 15 | mtbir |  |-  -. ZZ e. Fin | 
						
							| 17 |  | hashinf |  |-  ( ( ZZ e. _V /\ -. ZZ e. Fin ) -> ( # ` ZZ ) = +oo ) | 
						
							| 18 | 6 16 17 | mp2an |  |-  ( # ` ZZ ) = +oo | 
						
							| 19 | 9 18 | eqtr3di |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) |