| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|- ( _om e. Fin <-> E. x e. _om _om ~~ x ) |
| 2 |
|
nnord |
|- ( x e. _om -> Ord x ) |
| 3 |
|
ordom |
|- Ord _om |
| 4 |
|
ordelssne |
|- ( ( Ord x /\ Ord _om ) -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
| 5 |
2 3 4
|
sylancl |
|- ( x e. _om -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
| 6 |
5
|
ibi |
|- ( x e. _om -> ( x C_ _om /\ x =/= _om ) ) |
| 7 |
|
df-pss |
|- ( x C. _om <-> ( x C_ _om /\ x =/= _om ) ) |
| 8 |
6 7
|
sylibr |
|- ( x e. _om -> x C. _om ) |
| 9 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
| 10 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ _om <-> _om ~~ x ) ) |
| 11 |
9 10
|
syl |
|- ( x e. _om -> ( x ~~ _om <-> _om ~~ x ) ) |
| 12 |
11
|
biimpar |
|- ( ( x e. _om /\ _om ~~ x ) -> x ~~ _om ) |
| 13 |
|
pssinf |
|- ( ( x C. _om /\ x ~~ _om ) -> -. _om e. Fin ) |
| 14 |
8 12 13
|
syl2an2r |
|- ( ( x e. _om /\ _om ~~ x ) -> -. _om e. Fin ) |
| 15 |
14
|
rexlimiva |
|- ( E. x e. _om _om ~~ x -> -. _om e. Fin ) |
| 16 |
1 15
|
sylbi |
|- ( _om e. Fin -> -. _om e. Fin ) |
| 17 |
|
pm2.01 |
|- ( ( _om e. Fin -> -. _om e. Fin ) -> -. _om e. Fin ) |
| 18 |
16 17
|
ax-mp |
|- -. _om e. Fin |