| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|- ( _om e. Fin <-> E. x e. _om _om ~~ x ) |
| 2 |
|
nnord |
|- ( x e. _om -> Ord x ) |
| 3 |
|
ordom |
|- Ord _om |
| 4 |
|
ordelssne |
|- ( ( Ord x /\ Ord _om ) -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
| 5 |
2 3 4
|
sylancl |
|- ( x e. _om -> ( x e. _om <-> ( x C_ _om /\ x =/= _om ) ) ) |
| 6 |
5
|
ibi |
|- ( x e. _om -> ( x C_ _om /\ x =/= _om ) ) |
| 7 |
|
df-pss |
|- ( x C. _om <-> ( x C_ _om /\ x =/= _om ) ) |
| 8 |
6 7
|
sylibr |
|- ( x e. _om -> x C. _om ) |
| 9 |
|
ensym |
|- ( _om ~~ x -> x ~~ _om ) |
| 10 |
|
pssinf |
|- ( ( x C. _om /\ x ~~ _om ) -> -. _om e. Fin ) |
| 11 |
8 9 10
|
syl2an |
|- ( ( x e. _om /\ _om ~~ x ) -> -. _om e. Fin ) |
| 12 |
11
|
rexlimiva |
|- ( E. x e. _om _om ~~ x -> -. _om e. Fin ) |
| 13 |
1 12
|
sylbi |
|- ( _om e. Fin -> -. _om e. Fin ) |
| 14 |
|
pm2.01 |
|- ( ( _om e. Fin -> -. _om e. Fin ) -> -. _om e. Fin ) |
| 15 |
13 14
|
ax-mp |
|- -. _om e. Fin |