Metamath Proof Explorer


Theorem ominfOLD

Description: Obsolete version of ominf as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ominfOLD ¬ωFin

Proof

Step Hyp Ref Expression
1 isfi ωFinxωωx
2 nnord xωOrdx
3 ordom Ordω
4 ordelssne OrdxOrdωxωxωxω
5 2 3 4 sylancl xωxωxωxω
6 5 ibi xωxωxω
7 df-pss xωxωxω
8 6 7 sylibr xωxω
9 ensym ωxxω
10 pssinf xωxω¬ωFin
11 8 9 10 syl2an xωωx¬ωFin
12 11 rexlimiva xωωx¬ωFin
13 1 12 sylbi ωFin¬ωFin
14 pm2.01 ωFin¬ωFin¬ωFin
15 13 14 ax-mp ¬ωFin