| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odf1o1.x |
|- X = ( Base ` G ) |
| 2 |
|
odf1o1.t |
|- .x. = ( .g ` G ) |
| 3 |
|
odf1o1.o |
|- O = ( od ` G ) |
| 4 |
|
odf1o1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 5 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> G e. Grp ) |
| 6 |
1
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) |
| 7 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` X ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 8 |
5 6 7
|
3syl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 9 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. X ) |
| 10 |
9
|
snssd |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ X ) |
| 11 |
4
|
mrccl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 13 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> x e. ZZ ) |
| 14 |
8 4 10
|
mrcssidd |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ ( K ` { A } ) ) |
| 15 |
|
snidg |
|- ( A e. X -> A e. { A } ) |
| 16 |
9 15
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. { A } ) |
| 17 |
14 16
|
sseldd |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. ( K ` { A } ) ) |
| 18 |
2
|
subgmulgcl |
|- ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. ( K ` { A } ) ) -> ( x .x. A ) e. ( K ` { A } ) ) |
| 19 |
12 13 17 18
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( x .x. A ) e. ( K ` { A } ) ) |
| 20 |
19
|
ex |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ -> ( x .x. A ) e. ( K ` { A } ) ) ) |
| 21 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) = 0 ) |
| 22 |
21
|
breq1d |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> 0 || ( x - y ) ) ) |
| 23 |
|
zsubcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x - y ) e. ZZ ) |
| 24 |
23
|
adantl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x - y ) e. ZZ ) |
| 25 |
|
0dvds |
|- ( ( x - y ) e. ZZ -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) |
| 27 |
22 26
|
bitrd |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x - y ) = 0 ) ) |
| 28 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> G e. Grp ) |
| 29 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. X ) |
| 30 |
|
simprl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
| 31 |
|
simprr |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
| 32 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 33 |
1 3 2 32
|
odcong |
|- ( ( G e. Grp /\ A e. X /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 34 |
28 29 30 31 33
|
syl112anc |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 35 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 36 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 37 |
|
subeq0 |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 38 |
35 36 37
|
syl2an |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 39 |
38
|
adantl |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 40 |
27 34 39
|
3bitr3d |
|- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) |
| 41 |
40
|
ex |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) ) |
| 42 |
20 41
|
dom2lem |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) ) |
| 43 |
19
|
fmpttd |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) ) |
| 44 |
|
eqid |
|- ( x e. ZZ |-> ( x .x. A ) ) = ( x e. ZZ |-> ( x .x. A ) ) |
| 45 |
1 2 44 4
|
cycsubg2 |
|- ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) |
| 46 |
45
|
3adant3 |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) |
| 47 |
46
|
eqcomd |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) |
| 48 |
|
dffo2 |
|- ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) /\ ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) ) |
| 49 |
43 47 48
|
sylanbrc |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) |
| 50 |
|
df-f1o |
|- ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) /\ ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) ) |
| 51 |
42 49 50
|
sylanbrc |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) |